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ABSTRACT 1 
Microsimulation models that simulate travel demand at the level of individual travelers have been 2 
gaining increasing interest among practitioners. Transportation planning agencies across the 3 
country are steadily migrating to activity-based microsimulation models which provide 4 
considerable flexibility in testing policy scenarios. Generating a synthetic population is the first 5 
step in the application of any activity-based model system and hence has been a topic of extensive 6 
research in the activity-based modeling arena. Several researchers have developed population 7 
synthesizers that are able to generate synthetic populations while matching household- and person-8 
level constraints at a specified geographical resolution, e.g., census block group. However, 9 
information regarding control variables may not always be available at the specified spatial 10 
resolution. While information for some control variables may be available at the specified 11 
resolution, information on other control variables may be available only at a more aggregate spatial 12 
resolution. Ignoring control variables at different levels of spatial resolution could result in the 13 
generation of a synthetic population that is not representative of the underlying population. 14 
However, there has been limited progress on the development of synthetic population generators 15 
that are capable of accommodating control variables at multiple spatial resolutions. This paper 16 
proposes a robust approach to control for constraints at multiple geographic resolutions in 17 
generating a synthetic population. The methodology is an extension of the Iterative Proportional 18 
Updating (IPU) algorithm previously proposed and implemented by the authors. A case study 19 
demonstrating the efficacy of the enhanced algorithm is presented.  20 
 21 
Keywords: activity-based model, synthetic population generator, population synthesis, iterative 22 
proportional fitting, iterative proportional updating, sample weight 23 
  24 
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1. INTRODUCTION 1 
Activity-based microsimulation model systems (ABMs) are increasingly emerging as the next 2 
generation of travel forecasting models. The limitations of the four-step travel demand modeling 3 
process are well-documented (1). For the past two decades, many researches have been pursuing 4 
the development of ABMs that are built on sound behavioral foundations and represent travel in a 5 
realistic fashion. ABMs built on varying modeling paradigms have been introduced in the recent 6 
past. These include but are not limited to: DaySim (2); FAMOS (3); CEMDAP (4); ALBATROSS 7 
(5); TASHA (6); and CT-RAMP (7). 8 

ABMs require household (e.g., household size, number of vehicles, and number of workers) 9 
and person-level (e.g., age, gender, and race) attributes for the entire population in a model region 10 
to be applied in a forecasting or application mode.  Such disaggregate information for the entire 11 
population of a region is not publicly available and is very difficult to obtain. However, 12 
disaggregate data may be available for a random sample of households in the region, along with 13 
aggregate household and person-level frequency distributions of several attributes of interest (at 14 
various spatial resolutions) through census databases.  These databases provide a basis to generate 15 
a synthetic population with attributes of interest; the synthetic population serves as input to an 16 
ABM capable of predicting travel demand at the level of the individual traveler.  17 

Since the inception of ABMs, a number of synthetic population generators have been 18 
developed. The iterative Proportional Fitting (IPF) procedure (8-10) is at the heart of many of these 19 
synthesizers. Synthetic population generators generally employ the IPF procedure to estimate joint 20 
distributions of household and/or person attributes based on known univariate control distributions 21 
(11).  Guo and Bhat (12) extended the IPF procedure to enhance the fit to person-level attributes. 22 
Arentze et al. (13) proposed an algorithm in which person-level marginal constraints are converted 23 
into household-level constraints using relational matrices. The standard IPF-based procedure is 24 
then applied to estimate household joint distributions. Pritchard and Miller (14) implemented the 25 
IPF procedure with a sparse list-based data structure that can accommodate a large number of 26 
control variables. Auld and Mohammadian (15) proposed a novel approach that accounts for 27 
person-level constraints to compute the selection probability for a sample household after applying 28 
the IPF procedure to estimate the household joint distribution.  The synthesizer developed by 29 
Barthelemy and Toint (16) does not use the IPF procedure.  Instead, a pool of individuals is 30 
generated and households are formed using individuals from the pool to satisfy control 31 
distributions. Müller and Axhausen (17, 18) presented a novel algorithm labeled the ‘Hierarchical 32 
IPF’ to compute sample expansion factors at the person level and compare its performance with 33 
two similar algorithms (19-20).  Vovsha et al. (21) presented an enhanced entropy maximization 34 
approach that can accommodate household/person-level controls at multiple spatial resolutions.  35 
Lee and Fu (22) applied a cross-entropy optimization model to generate synthetic populations by 36 
generalizing constraints of variables of interest at different levels (household/person).  Abraham 37 
et al (23) employed a combinatorial optimization algorithm to match controls at both household 38 
and person-levels while accounting for constraints at multiple spatial resolutions. Farooq et al (24) 39 
adopted Markov Chain Monte Carlo processes to retrieve the underlying joint distribution of the 40 
population, from which a realization of the synthetic population can be generated. Ma and 41 
Srinivasan (25) introduced the Fitness-Based-Synthesis (FBS) methodology in which households 42 
are iteratively selected with replacement from sample data until the control totals are matched. 43 
Casati et al. (26) developed the Hierarchical Markov Chain Monte Carlo (MCMC) procedure in 44 
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order to perfectly match a synthetic population against known marginal control totals at the 1 
household and person levels. 2 

This paper extends the work of Ye et al. (19), who introduced a heuristic iterative procedure 3 
called the Iterative Proportional Updating (IPU) algorithm that can generate a synthetic population 4 
while matching both household and person-level distributions closely. Sample weights are 5 
estimated such that both household and person constraints are matched at a specified geographical 6 
resolution. Despite some recent progress (e.g., 21, 23), the IPU algorithm and many of the other 7 
algorithms noted previously have not been able to accommodate household and person-level 8 
attributes of interest at multiple geographical resolutions simultaneously. This shortcoming may 9 
lead to a potential mismatch between the synthetic population and true population on known 10 
characteristics of interest. The primary objective of this paper is to present an enhanced IPU 11 
algorithm that is able to accommodate constraints at multiple spatial resolutions.  12 

The remainder of the paper is organized as follows. The next section presents an overview 13 
of the synthetic population generator called PopGen, which is based on the algorithm described in 14 
Ye et al. (19). This is followed by a description of an enhanced approach to accommodate controls 15 
for attributes of interest simultaneously at multiple geographic resolutions. The fourth section 16 
presents a case study in which the enhanced algorithm is employed to generate a synthetic 17 
population for a model region. This section also presents a scenario analysis to illustrate the 18 
efficacy of the approach. The final section presents some concluding thoughts and directions for 19 
future research.  20 
 21 
2. OVERVIEW OF POPGEN METHODOLOGY 22 
The traditional IPF procedure is adopted by most synthetic population generators to estimate 23 
household and person-level joint distributions that satisfy the given marginal distributions of 24 
interest.  This facilitates the estimation of sample weights and selection probabilities for drawing 25 
households and composing a synthetic population that closely matches the true population with 26 
respect to household-level marginal distributions. The synthetic population is essentially 27 
comprised of all persons in the chosen households.  A critical shortcoming of this procedure is that 28 
attributes of interest are not controlled and matched at the person-level. The resulting synthetic 29 
population fails to closely match both household and person-level marginal distributions, except 30 
under extremely unrealistic conditions.   31 

Ye et al. (19) introduced a heuristic iterative procedure known as the IPU (iterative 32 
proportional updating) algorithm to overcome the shortcoming of using only the household-level 33 
IPF procedure in population synthesis. This algorithm has been implemented in PopGen, an open 34 
source synthetic population generator.  In PopGen, the IPF procedure is applied first to both 35 
household- and person-level control variables of interest to obtain the number of households and 36 
persons in each cell of the respective joint distributions.  Appropriate rounding procedures are 37 
applied to obtain cell “constraints” that must be matched through the population synthesis process. 38 
The IPU algorithm computes weights for sample households such that household-level as well as 39 
person-level marginal distributions are matched as closely as possible. An illustration of the IPU 40 
procedure is presented in Ye et al. (19) and replicated here briefly for the sake of completeness 41 
(Table 1). In the IPU procedure, unit weights are initially assigned to all sample households 42 
depicted in a sparse matrix format (see the column labeled “Weights” in Table 1). The weighted 43 
sum is computed using the initial set of weights. Next, an adjustment factor for a household-type 44 
or person-type is computed by dividing the constraint by the corresponding weighted sum (e.g., 45 
35/3=11.67 for household type 1). The first three households that belong to household type 1 46 
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receive a weight of 11.67 (see Table 1). The algorithm proceeds by continuously adjusting 1 
household weights to account for subsequent constraints. After adjusting sample household 2 
weights, the weighted sums are updated for all household-types and person-types. When all 3 
constraints have been considered once, a full iteration is said to have been completed. In Table 1, 4 
the column labeled “Weights 5” depicts the weights obtained at the end of the first full iteration.      5 

The completion of each iteration is followed by a check of the goodness-of-fit. If the 6 
goodness-of-fit satisfies a user-specified tolerance, the IPU procedure is terminated. A deviation 7 
measure (𝛿𝛿𝑗𝑗) for each household-type or person-type is computed as:  8 

𝛿𝛿𝑗𝑗 =
�𝑑𝑑𝑗𝑗 − 𝑐𝑐𝑗𝑗�

𝑐𝑐𝑗𝑗
 

 
(1) 

where  j denotes the constraint or population characteristic of interest (j = 1, 2,…, 5) 9 
𝑑𝑑𝑗𝑗 represents the weighted sum of households for population characteristic j 10 
𝑐𝑐𝑗𝑗 is the actual number of households or persons in the true population for characteristic j. 11 

The average deviation value across all household/person type constraints is compared between 12 
successive iterations. If the absolute difference of average deviation values between two full 13 
iterations falls below a threshold value set by the analyst, the IPU procedure is terminated. For 14 
example, in Table 1, the absolute difference between average deviation measure values is 0.8173 15 
after the first full iteration (average 𝛿𝛿𝑏𝑏= 0.9127 and average 𝛿𝛿𝑎𝑎= 0.0954). 16 

After the IPU procedure, selection probabilities are computed for sample households based 17 
on the IPU-computed weights and Monte Carlo drawing procedures are employed to construct the 18 
synthetic population. Since the IPU procedure accounts for both household and person-level joint 19 
distributions, households of the same type (cell in the joint distribution) may have different 20 
selection probabilities. The number of households in the synthetic population should match the 21 
frequencies of households in the rounded joint distribution table for all household types. The 22 
unique aspect of the PopGen methodology is that it facilitates drawing households such that the 23 
number of persons of various types (in the synthetic population) closely matches the frequencies 24 
of persons in the rounded joint distribution table for all person types.  25 
 26 
3. THE ENHANCED MULTI-RESOLUTION METHODOLOGY 27 
Although the IPU procedure proposed by Ye et al. (19) effectively controls for both household and 28 
person-level attributes of interest, it is still constrained by its applicability to only one geographical 29 
resolution at a time. For example, if control distributions for a few variables of interest are available 30 
at the Traffic Analysis Zone (TAZ) level, and distributions of others are available only at the 31 
census tract level, the existing algorithm cannot be used to control variables of interest at both 32 
geographical resolutions simultaneously. The resulting synthetic population may not be as 33 
representative of the true population as it might have been had information available at both 34 
geographic resolutions been used.  Inaccuracies in population representativeness will inevitably 35 
have adverse downstream impacts on forecasts obtained from activity-based microsimulation 36 
models that take the synthetic population as input. To address this issue, this paper proposes an 37 
enhanced IPU procedure that can control for variables of interest at multiple geographical 38 
resolutions simultaneously. The enhanced algorithm is explained in detail in this section. An 39 
illustrative example is provided for a region with two geographic units. Control distributions are 40 
available at both the region and geographic unit levels, where each unit has its own set of household 41 
and person-level marginal distributions to be matched. 42 
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 1 
3.1 Initialize Household Sample Weight 2 
The enhanced algorithm begins by assigning an initial set of weights to all sample households in 3 
all geographic units.  Unit weights are assigned to each sample household to start the sample 4 
weight estimation process, as shown in Table 2. The illustrative example corresponds to 8 sample 5 
households with control distributions for two geographical units. Separate marginal distributions 6 
are available at the region level and at the level of two geographic units. Person-level marginal 7 
distributions are assumed to be available only at the level of geographic units (see row labeled 8 
‘Constraint’ in Table 2). Weighted sums for each household type (and person type) are populated 9 
in the row labeled ‘weighted sum’ and the goodness-of-fit deviation measure explained previously 10 
is populated in the row labeled “δ”. The IPF procedure is run for the region as a whole and for 11 
individual geographic units to obtain constraints that need to be matched at various spatial 12 
resolutions.  13 
 Sample data for each geographic unit is furnished in the form of a frequency matrix.  In 14 
Table 2, each row corresponds to a single household record and provides data describing the 15 
composition of the household. The entries in the household type columns of the frequency matrix 16 
include either 0 or 1, indicating whether the household belongs to the category in question. 17 
Columns pertaining to person type in the frequency matrix include entries to indicate the number 18 
of persons of each type in the household. There are two household types and three person types 19 
considered in this example with marginal distributions for variables provided at two levels (Region 20 
and Geo). Household types may be defined by variables such as household size, household income, 21 
or car ownership, and person types may be defined by variables such as age and gender. For ease 22 
of interpretation, ‘Region’ is considered a more aggregate ‘upper’ level spatial resolution (e.g., 23 
county), and Geo is the more disaggregate ‘lower’ level spatial resolution (e.g., census tract). 24 

The deviation measure “δ” helps assess the match between the weighted sums and the 25 
constraints at the end of each iteration. The deviation value can be computed at both Region and 26 
Geo levels using Equation 1. At the Region level, the deviation measured should be computed 27 
considering all geographic units together. For example, in Table 2, household type 1 has a weighted 28 
sum of 4 at the Region level, as there are two households of that type in Geo 1 and two households 29 
in Geo 2. The Region level constraint for household type 1 is 86, resulting in an initial deviation 30 
measure of |4 - 86| ÷ 86 = 0.953. The weighted sums are said to perfectly satisfy the constraints 31 
when all of the δ values simultaneously approach zero. In the first iteration (Table 2, Panel A), the 32 
δ values are usually quite large as the initial weights are set arbitrarily to unity.  33 
 34 
3.2 Adjust Household Sample Weights to Match Region Level Constraints 35 
In this step, sample household weights for all geographic units in a Region are adjusted to match 36 
the marginal distributions at the Region level. The procedure consists of three sub-steps.  37 

1. An adjustment factor for the first household type is computed as the Region level constraint 38 
divided by the corresponding weighted sum in all geographic units taken together. In the 39 
example shown in Table 2, the adjustment factor is 86 ÷ 4 = 21.5 for households of type 1.  40 

2. Weight values for the sample households that correspond to the household type under 41 
consideration are multiplied by the adjustment factor. Thus, the second and fourth 42 
household records in the sample now have weights of 21.5 (see the ‘weight’ column of 43 
Panel B in Table 2).  44 

3. All weighted sum and deviation values are updated based on the new weights for all 45 
household and person types at both Region and Geo levels. In Table 2 (Panel B), 46 
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multiplying the column ‘weight’ with the column corresponding to household type 1 yields 1 
a weighted sum of 86 (matching the constraint perfectly). The corresponding weighted sum 2 
for household type 1 is 45.33 at the level of Geo 1 and Geo 2 (resulting in large deviations 3 
from constraint values in the respective geographic units).  4 
Steps 2 and 3 are repeated for each household type column at the Region level. Panel B of 5 

Table 2 shows the results at the end of the first full iteration at the Region level (the weight 6 
computation procedure is run thrice within the first full iteration, once for each of the three distinct 7 
household types at the Region level).  It can be observed that the δ values for all household types 8 
at the region level are zero as the weighted sums match the Region level constraints perfectly. 9 
However, the δ values at the disaggregate Geo level are not close to zero.  10 
 11 
3.3 Adjust Household Sample Weights to Match Constraints for Each Geographic Unit 12 
The objective of this step is to satisfy the household type and person type constraints at a finer 13 
spatial resolution by adjusting sample household weights within each geographic unit (Geo). To 14 
achieve this, the sample weighting process is applied separately to each geographic unit. First, an 15 
adjustment factor for the first household type in a geographic unit (say Geo 1) is computed as the 16 
corresponding constraint divided by the weighted sum. For example, the adjustment factor for 17 
household type 1 in Geo 1 is 46 ÷ 45.33 = 1.0147 (Table 2, Panel B). Second, weight values for 18 
the sample households that belong to household type 1 are adjusted by multiplying the current 19 
weight with the adjustment factor. This is shown in Table 3 (Panel A, first row) where the weight 20 
for the first sample household is adjusted as 13.67 × 1.0147 = 13.87. This process is repeated for 21 
all household and person types in the geographic unit. Weighted sums and corresponding deviation 22 
values are updated (based on the new weights) for the geographic unit under consideration. This 23 
procedure is carried out for all geographic units within a Region to complete one full iteration of 24 
the enhanced algorithm. The weighted sum and deviation values at the Region level are also 25 
updated at the end of each adjustment (last three rows in Panel A of Table 3).  26 

One complete set of adjustments of weights at the Region and Geo levels comprises an 27 
iteration of the enhanced IPU procedure. After the first iteration, there is an improvement in the 28 
match between weighted sums and constraints, but some differences persist. The entire Region 29 
and Geo level adjustment process is repeated and the weights are iteratively adjusted until there is 30 
no further improvement in the match with respect to the different constraints. As iterations progress, 31 
the average δ value approaches zero indicating that the sample weights are converging, with 32 
weighted sums for all household and person types matching the geographic unit level constraints.  33 
 The enhanced IPU algorithm is an iterative procedure that is terminated when the 34 
improvement in the average δ value drops below a user-specified threshold.  If all of the constraints 35 
are consistent across geographic levels, then the solution should result in a perfect match between 36 
weighted sums and constraints.  On the other hand, if there are inconsistencies in marginal 37 
distributions across the geographic levels, then the solution is likely to result in a perfect match for 38 
some constraints and only a close match for others.  Thus consistency of input data (across 39 
geographic levels) is of considerable importance in population synthesis that accommodates 40 
control variables at multiple spatial resolutions.  41 

The solution after 1000 complete iterations are shown in Panel B of Table 3 for the 42 
illustrative example. It can be seen that household type constraints are perfectly matched at the 43 
Region level. At the disaggregate geographical unit level (Geo), it can be seen that the algorithm 44 
matches both household and person type constraints quite closely (with δ values close to zero). 45 
 46 
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4. CASE STUDY 1 
To test the efficacy of the enhanced IPU algorithm, a case study is carried out where a synthetic 2 
population is generated for a model area while controlling for household and person type marginal 3 
distributions at both the county (Region) and TAZ (traffic analysis zone serving as Geo) levels. In 4 
addition, the case study demonstrates the value of using additional controls at more aggregate 5 
spatial levels in generating a synthetic population. First, the model area, the input data, and the 6 
population synthesis setup is described. This is followed by comparisons of goodness-of-fit of the 7 
synthetic population and performance metrics for the estimated sample weights.  8 
  9 
4.1 Description of the Model Region and Input Data 10 
The model area for the case study is the planning region of Baltimore Metropolitan Council (BMC) 11 
that consists of ten counties (District of Columbia, Anne Arundel, Baltimore, Carroll, Frederick, 12 
Harford, Howard, Montgomery, Prince George’s, and Baltimore City) across Maryland and the 13 
District of Columbia. Household marginal distributions were provided by BMC at the county and 14 
TAZ levels for household size, household income, and number of workers in the household. 15 
Marginal distributions for variables that were not available at the county level were derived by 16 
aggregating TAZ-level marginal distributions. The marginal distribution for ‘age of household 17 
head’ was available only at the county level. For groupquarters, marginal distributions were 18 
available for type of groupquarter at the TAZ level, and the total number of groupquarter units was 19 
available at the county level. Among person-level variables, the marginal distribution for 20 
employment status was available at the TAZ level, while the marginal distribution for person age 21 
was available at the county level.  The total population for the model area is 5,416,563 persons 22 
(based on the employment status distribution) residing in 2,076,236 households (derived from the 23 
distribution of number of workers in the household), and 145,718 groupquarters (from the type of 24 
groupquarter unit distribution).   25 
 The 2008-2012 five-year American Community Survey (ACS) Public Use Microdata 26 
Sample (PUMS) data for Maryland and District of Columbia served as the sample data. The data 27 
included 123,027 household records, 8,912 groupquarter records, and 310,252 person records. The 28 
household records in the PUMS data are geocoded to a Public Use Microdata Area (PUMA).  29 
Because the population is being synthesized based on county and TAZ level control distributions, 30 
a geographic correspondence file mapping the three geographical entities (County  PUMA  31 
TAZ) was developed. This case study considered four different scenarios to test the enhanced 32 
algorithm and the benefits gained through the inclusion of control variable distributions at multiple 33 
geographic resolutions.  They are: 34 

 Scenario 1 – Only TAZ Level Controls: This scenario is consistent with general practice 35 
where synthetic populations are generated at the TAZ level based on controls that are 36 
available at this level.  In this case study, household-level TAZ controls include 37 
household size, household income, and number of workers and person-level TAZ 38 
controls include employment status.  39 

 Scenario 2 – All TAZ Level Controls + Householder Age Control at County Level: This 40 
scenario is the same as Scenario 1, but includes an additional control at the county level 41 
for age of householder.  Thus, this scenario entails accommodating controls at multiple 42 
geographic resolutions.    43 

 Scenario 3 – All TAZ Level Controls + Person Age Control at County Level: This 44 
scenario is similar to Scenario 2, except that the additional control at the county level 45 
is ‘person age’.   46 
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 Scenario 4 – All TAZ Level Controls + Householder Age and Person Age Controls at 1 
County Level: This is the comprehensive scenario where all available information on 2 
controls at both geographic levels is utilized.  3 

 4 
4.2 Results of Synthetic Population Generation 5 
Table 4 presents an aggregate comparison of the distributions of various household attributes in 6 
the synthetic population against corresponding distributions in the true population. The regional 7 
comparison of distributions of various attributes serves as an overall assessment of the synthetic 8 
population generation process and the efficacy of the multilevel enhanced IPU algorithm.  Table 9 
5 presents similar statistics for the person-level attributes.  An examination of Table 4 shows that 10 
the fit of the synthetic population is excellent for household size, household income, and household 11 
worker count in Scenario 1.  This is consistent with expectations because these three variables 12 
were controlled in the synthesis process in Scenario 1.  Because householder age (control available 13 
at county level only) was not controlled, the deviation is considerably larger for this variable.  In 14 
Scenario 2, where the householder age variable is controlled (at the county level) through the 15 
enhanced IPU algorithm, the fit is considerably improved without any compromise with respect to 16 
fit to TAZ level controls.  In the third scenario, the fit to TAZ level control variables is excellent 17 
as expected, but the fit to householder age is rather poor – once again reflecting the difficulty in 18 
matching distributions of uncontrolled variables.  In this instance, the fit to householder age is poor 19 
even when controlling for person age at the county level (in the third scenario).  In other words, 20 
person age is not a sufficient substitute for householder age.  In the fourth scenario, where all 21 
variables are controlled, the match between synthetic and actual population distributions is 22 
excellent for all variables.  There is a slight compromise in Scenario 4 with respect to the fit to 23 
householder age (relative to Scenario 2), but this compromise must be viewed in the context of the 24 
vast improvement of fit obtained in matching the person age distribution in Scenario 4. In Table 5, 25 
it can be seen that the person age distribution matches the true population age distribution quite 26 
closely, suggesting that the addition of the person age control variable to the synthesis process 27 
provides a more representative synthetic population overall (despite the modest compromise with 28 
respect to householder age).  The fit to employment status is quite good in all scenarios, consistent 29 
with the fact that employment status, which is a TAZ level control variable, is controlled in all 30 
scenarios.  The fit to person age distribution is best in Scenarios 3 and 4 because it is included as 31 
a control variable in these scenarios.  Scenario 4 offers a slightly worse fit relative to Scenario 3 32 
for person age distribution, but the vastly improved fit to householder age (seen in Table 4) more 33 
than makes up for this modest compromise.         34 

Table 6 presents a comparison of the performance of the synthetic population generation 35 
process across the four scenarios for the two variables for which controls are available solely at 36 
the county level.  The comparison is performed for each county to obtain more disaggregate 37 
insights into the quality of the synthetic population generated in each scenario. The population 38 
synthesis was performed such that the household worker count was controlled last and hence 39 
controlled perfectly.  The TAZ level controls showed a total household count of 1,801,191 for the 40 
region based on this control variable.  Thus, the synthetic population generation process 41 
consistently generates 1,801,191 households in every scenario (because this control variable is 42 
used in every scenario).  The total deviation and percent deviation values for householder age are 43 
therefore consistent across all scenarios, as the synthesis process generates the same number of 44 
households in each county regardless of scenario.  However, the percent deviation across 45 
householder age categories differ substantially depending on whether or not householder age is 46 
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controlled.  In Scenarios 2 and 4, where householder age is controlled, the percent deviation across 1 
categories shows a much smaller range than in Scenarios 1 and 3.  Controlling for householder age 2 
substantially improved the fit of the synthetic population with respect to this variable.  Similarly, 3 
a comparison was also performed for person age. As the synthesis process yields a slightly different 4 
population count depending on the control variables used in each scenario, the total deviation and 5 
percent deviation will vary by county across scenarios.  The percent deviation across person age 6 
categories shows a much smaller range in Scenarios 3 and 4, the two scenarios where this variable 7 
is controlled.  The range of error in replicating the person age distribution is quite large in Scenarios 8 
1 and 2 where person age is not controlled.  It is clear that the synthetic population generated in 9 
Scenario 4 offers the best fit with respect to all of the available control variables, including those 10 
at the TAZ level and County level.  Not including county level controls severely compromises the 11 
representativeness of the synthetic population; including such controls, on the other hand, greatly 12 
improves the representativeness of the synthetic population with respect to all variables at all levels 13 
with a very modest and virtually negligible compromise in goodness of fit that often comes with 14 
increasing the number of constraints that must be matched, and the consequent greater likelihood 15 
of inconsistency in input control distributions across variables both within and between geographic 16 
levels.    17 
 18 
5. CONCLUSION 19 
Activity-based microsimulation model (ABM) systems are being increasingly adopted to simulate 20 
activity-travel choices at the disaggregate level of individual travelers. ABMs require information 21 
at the level of the individual household and person for the entire population of a model region so 22 
that traveler behavior can be modeled at the level of the individual agent as a function of socio-23 
economic, demographic, and built environment variables. However, such information is neither 24 
readily available nor easy to obtain.  Synthetic population generators are therefore used to create   25 
a synthetic population that closely mirrors the actual population of a region with respect to known 26 
distributions on variables of interest. Synthetic population generators that use readily available 27 
sample data and marginal distributions (provided by the Census Bureau) for household-level and 28 
person-level attributes of interest have been developed and deployed in the past decade to generate 29 
synthetic populations.  30 

With the exception of a few recent developments, virtually all of the synthetic population 31 
generators  are able to control for variables at a single geographical resolution (say, traffic analysis 32 
zone or census block group).  However, it is often difficult to obtain marginal distributions on all 33 
variables of interest at a single geographical resolution.  Moreover, in some jurisdictions, different 34 
entities may be responsible for producing aggregate population forecasts at various geographic 35 
levels.  For example, a metropolitan planning organization may produce population forecasts at 36 
the TAZ level, but a county government may produce forecasts at the county level (for the same 37 
or different set of variables).  It may be desirable to ensure that the synthetic population adheres 38 
to population forecasts produced by multiple entities at different geographic levels.  In addition, 39 
the ability to consider control variable distributions at multiple geographic levels would lead to a 40 
population synthesis process that utilizes full information (as opposed to information available 41 
solely at a single spatial resolution).   42 

To overcome this shortcoming, this paper presents an enhanced methodology for 43 
population synthesis that extends the original iterative proportional updating (IPU) algorithm 44 
proposed by Ye et al. (19).  The enhanced algorithm is able to accommodate controls at multiple 45 
geographic levels through an iterative process that alternates between adjusting sample household 46 
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weights to match constraints at different levels.  Through such an iterative alternating process, the 1 
extended IPU algorithm is able to control for different attributes of interest at multiple spatial 2 
resolutions simultaneously. Using this algorithm, it is possible to control for variables of interest 3 
for which marginal control distributions may only be available at a more aggregate geographic 4 
scale. Results from a case study in which the extended algorithm was applied to the model region 5 
of the Baltimore Metropolitan Council demonstrate the efficacy of the proposed approach.  The 6 
representativeness of the synthetic population was substantially improved through the inclusion of 7 
additional control variables at multiple geographic levels.  This research effort helps advance the 8 
development of synthetic population generators that can control for attributes of interest at multiple 9 
spatial resolutions simultaneously, and shows that it is better to control for variables at the 10 
resolution for which data is available than not controlling for them at all. 11 
 12 
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Table 1 Illustration of Iterative Proportional Updating (IPU) Algorithm 

Household ID Weights Household 
Type 1 

Household 
Type 2 

Person 
Type 1 

Person 
Type 2 

Person 
Type 3 

Weights 
1 

Weights 
2 

Weights 
3 

Weights 
4 

Weights 
5 

Final 
Weights 

1 1 1 0 1 1 1 11.67 11.67 9.51 8.05 12.37 1.36 
2 1 1 0 1 0 1 11.67 11.67 9.51 9.51 14.61 25.66 
3 1 1 0 2 1 0 11.67 11.67 9.51 8.05 8.05 7.98 
4 1 0 1 1 0 2 1.00 13.00 10.59 10.59 16.28 27.79 
5 1 0 1 0 2 1 1.00 13.00 13.00 11.00 16.91 18.45 
6 1 0 1 1 1 0 1.00 13.00 10.59 8.97 8.97 8.64 
7 1 0 1 2 1 2 1.00 13.00 10.59 8.97 13.78 1.47 
8 1 0 1 1 1 0 1.00 13.00 10.59 8.97 8.97 8.64 

Weighted Sum   3.00 5.00 9.00 7.00 7.00            
Constraints   35.00 65.00 91.00 65.00 104.00            

 δb   0.9143 0.9231 0.9011 0.8923 0.9327            
Weighted Sum 1   35.00 5.00 51.67 28.33 28.33            
Weighted Sum 2   35.00 65.00 111.67 88.33 88.33            
Weighted Sum 3   28.52 55.38 91.00 76.80 74.39            
Weighted Sum 4  25.60 48.50 80.11 65.00 67.68         
Weighted Sum 5   35.02 64.90 104.84 85.94 104.00            

 δa   0.0006 0.0015 0.1521 0.3222 0.0000             
Final Weighted 

Sum   35.00 65.00 91.00 65.00 104.00             
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Table 2 Initial Sample Household Weights and Weights After Adjustment for Region Level Constraints 

    Panel A. Initial Household Sample Weight Panel B. Adjusted Weights after Full Iteration at Region Level 

      Region HH Type HH Type Person Type   Region HH Type HH Type Person Type 

Fi
rs

t g
eo

gr
ap

hi
c 

un
it 

(G
eo

 1
) hid weight 1 2 3 1 2 1 2 3 weight 1 2 3 1 2 1 2 3 

1 1 0 0 1 1 0 1 1 1 13.67 0 0 1 1 0 1 1 1 
2 1 1 0 0 1 0 1 0 1 21.50 1 0 0 1 0 1 0 1 
3 1 0 1 0 1 0 2 1 0 10.17 0 1 0 1 0 2 1 0 
4 1 1 0 0 0 1 1 0 2 21.50 1 0 0 0 1 1 0 2 
5 1 0 1 0 0 1 0 2 1 10.17 0 1 0 0 1 0 2 1 
6 1 0 0 1 0 1 1 1 0 13.67 0 0 1 0 1 1 1 0 
7 1 0 1 0 0 1 2 1 2 10.17 0 1 0 0 1 2 1 2 
8 1 0 0 1 0 1 1 2 0 13.67 0 0 1 0 1 1 2 0 

      Weighted Sum 3 5 9 8 7     Weighted Sum 45.33 69.17 124.67 95.33 108.67 

   Geo 1  Constraint 46 51 92 88 84 Geo 1  Constraint 46 51 92 88 84 

     δ 0.94 0.90 0.90 0.91 0.92    δ 0.01 0.36 0.36 0.08 0.29 

      Region HH Type HH Type Person Type   Region HH Type HH Type Person Type 

Se
co

nd
 g

eo
gr

ap
hi

c 
un

it 
(G

eo
 2

) 

hid weight 1 2 3 1 2 1 2 3 weight 1 2 3 1 2 1 2 3 
1 1 0 0 1 1 0 1 1 1 13.67 0 0 1 1 0 1 1 1 
2 1 1 0 0 1 0 1 0 1 21.50 1 0 0 1 0 1 0 1 
3 1 0 1 0 1 0 2 1 0 10.17 0 1 0 1 0 2 1 0 
4 1 1 0 0 0 1 1 0 2 21.50 1 0 0 0 1 1 0 2 
5 1 0 1 0 0 1 0 2 1 10.17 0 1 0 0 1 0 2 1 
6 1 0 0 1 0 1 1 1 0 13.67 0 0 1 0 1 1 1 0 
7 1 0 1 0 0 1 2 1 2 10.17 0 1 0 0 1 2 1 2 
8 1 0 0 1 0 1 1 2 0 13.67 0 0 1 0 1 1 2 0 

      Weighted Sum 3 5 9 8 7    Weighted Sum 45.33 69.17 124.67 95.33 108.67 

   Geo 2  Constraint 33 99 138 122 104 Geo 2  Constraint 33 99 138 122 104 

     δ 0.91 0.95 0.94 0.93 0.93   δ 0.37 0.30 0.10 0.22 0.05 

Region 

Weighted 
Sum 4.0 6.0 6.0             86.0 61.0 82.0           

Constraint 86.0 61.0 82.0        86.0 61.0 82.0      
δ 0.953 0.902 0.927             0.000 0.000 0.000           
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Table 3 Sample Household Weights After Adjusting for One Control at the Geographic Unit Level (Geo 1) and After 1000 Complete Iterations of 
the Enhanced IPU Algorithm 

    Panel A. Result after Controlling for HH Type 1 in Geo Iteration 1 Panel B. Result after 1000 Full Iterations 

      Region HH Type HH Type Person Type   Region HH Type HH Type Person Type 

Fi
rs

t g
eo

gr
ap

hi
c 

un
it 

(G
eo

 1
) hid weight 1 2 3 1 2 1 2 3 weight 1 2 3 1 2 1 2 3 

1 13.87 0 0 1 1 0 1 1 1 8.33 0 0 1 1 0 1 1 1 
2 21.82 1 0 0 1 0 1 0 1 25.71 1 0 0 1 0 1 0 1 
3 10.32 0 1 0 1 0 2 1 0 12.19 0 1 0 1 0 2 1 0 
4 21.50 1 0 0 0 1 1 0 2 12.19 1 0 0 0 1 1 0 2 
5 10.17 0 1 0 0 1 0 2 1 20.02 0 1 0 0 1 0 2 1 
6 13.67 0 0 1 0 1 1 1 0 8.22 0 0 1 0 1 1 1 0 
7 10.17 0 1 0 0 1 2 1 2 2.78 0 1 0 0 1 2 1 2 
8 13.67 0 0 1 0 1 1 2 0 8.22 0 0 1 0 1 1 2 0 

      Weighted Sum 46.00 69.17 125.48 95.68 109.18     Weighted Sum 46.23 51.43 92.60 88.00 84.00 

   Geo 1  Constraint 46 51 92 88 84 Geo 1  Constraint 46 51 92 88 84 

     δ 0.000 0.356 0.364 0.087 0.300    δ 0.005 0.009 0.007 0.000 0.000 

      Region HH Type HH Type Person Type   Region HH Type HH Type Person Type 

Se
co

nd
 g

eo
gr

ap
hi

c 
un

it 
(G

eo
 2

) 

hid weight 1 2 3 1 2 1 2 3 weight 1 2 3 1 2 1 2 3 
1 13.67 0 0 1 1 0 1 1 1 4.46 0 0 1 1 0 1 1 1 
2 21.50 1 0 0 1 0 1 0 1 17.71 1 0 0 1 0 1 0 1 
3 10.17 0 1 0 1 0 2 1 0 11.00 0 1 0 1 0 2 1 0 
4 21.50 1 0 0 0 1 1 0 2 30.39 1 0 0 0 1 1 0 2 
5 10.17 0 1 0 0 1 0 2 1 10.31 0 1 0 0 1 0 2 1 
6 13.67 0 0 1 0 1 1 1 0 26.85 0 0 1 0 1 1 1 0 
7 10.17 0 1 0 0 1 2 1 2 5.38 0 1 0 0 1 2 1 2 
8 13.67 0 0 1 0 1 1 2 0 26.85 0 0 1 0 1 1 2 0 

      Weighted Sum 45.33 69.17 125.67 95.33 108.67    Weighted Sum 33.17 99.77 139.00 122.00 104.00 

   Geo 2  Constraint 33 99 138 122 104 Geo 2  Constraint 33 99 138 122 104 

     δ 0.374 0.301 0.097 0.219 0.045   δ 0.005 0.008 0.007 0.000 0.000 

Region 

Weighted 
Sum 86.3 61.2 82.2             86.0 61.7 82.9           

Constraint 86.0 61.0 82.0        86.0 61.0 82.0      
δ 0.004 0.002 0.002             0.000 0.011 0.011           
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Table 4 Comparison of Household-Level Marginal Distributions for Entire Model Region 

Variable 
Name Category Actual 

% Difference: (Synthetic - Actual)/Actual 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 

Household 
Size 

1 476509 (26.46) -0.29 -0.29 -0.29 -0.29 
2 539006 (29.93) 0.12 0.12 0.12 0.12 
3 322968 (17.93) 0.11 0.11 0.11 0.11 
4 259973 (14.43) 0.09 0.09 0.09 0.09 
5 202706 (11.25) 0.08 0.08 0.08 0.08 
Total 1801162 1801191 1801191 1801191 1801191 

Household 
Income 

<$15K 150344 (8.35) -0.18 -0.18 -0.18 -0.18 
$15K to <$30K 165993 (9.22) -0.10 -0.10 -0.10 -0.10 
$30K to <$50K 260220 (14.45) -0.01 -0.01 -0.01 -0.01 
$50K to <$100K 610697 (33.91 0.01 0.01 0.01 0.01 
$100K or over 613879 (34.1) 0.08 0.08 0.08 0.08 
Total 1801133 1801191 1801191 1801191 1801191 

Household 
Worker 
Count 

0 348324 (19.34) -0.07 -0.07 -0.07 -0.07 
1 647931 (35.97) 0.03 0.03 0.03 0.03 
2 649985 (36.09) 0.01 0.01 0.01 0.01 
3 154951 (8.60) -0.01 -0.01 -0.01 -0.01 
Total 1801191 1801191 1801191 1801191 1801191 

Householder 
Age (years) 

<25  62960 (3.43) -4.32 -1.84 42.76 -2.77 
25-34 289882 (15.77) -10.41 -2.06 0.59 -2.29 
35-44 330245 (17.97) 8.61 -2.02 0.83 -2.36 
45-54 396840 (21.59) 5.36 -2.07 -1.53 -2.13 
55-64 360068 (19.59) -5.90 -1.77 -7.01 -1.85 
65 or above 398121 (21.66) -8.17 -2.14 -9.29 -1.42 
Total 1838116 1801191 1801191 1801191 1801191 

Scenario 1: Only TAZ level controls 
Scenario 2: TAZ level controls + 'Householder Age' control at the county level 
Scenario 3: TAZ level controls + 'Person Age' control at the county level  
Scenario 4: TAZ level controls + 'Householder Age' and 'Person Age' controls at the county level 
Numbers in parentheses are percentage values   
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Table 5 Comparison of Person- and Groupquarter-level Marginal Distributions for Entire 
Model Region 

Variable 
Name Category Given 

% Difference: (Synthetic - Given)/Given 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 

Employment 
Category 

Employed 2451494 (51.14) 2.42 1.85 0.33 0.43 
Unemployed 2342486 (48.86) -2.69 -1.87 -3.38 -3.54 
Total 4793980 4790075 4795380 4722872 4721624 

Person Age 

0-4 300100 (6.24) -0.09 2.51 -2.74 -3.51 
5-9 300681 (6.25) 3.03 2.61 -2.80 -4.03 
10-14 310730 (6.46) 3.18 2.18 -2.73 -3.84 
15-19 325957 (6.78) 8.74 6.42 -2.31 -3.19 
20-24 333563 (6.93) -5.89 -6.86 -1.80 -2.28 
25-29 345548 (7.18) -11.70 -7.63 -2.12 -2.68 
30-34 324888 (6.75) -11.57 -6.01 -1.60 -1.39 
35-39 314668 (6.54) 3.45 -2.83 -1.54 -2.72 
40-44 330160 (6.86) 9.60 2.54 -1.60 -2.17 
45-49 360197 (7.49) 7.92 3.15 -1.33 -2.30 
50-54 363570 (7.56) -0.10 -4.36 -1.53 -2.09 
55-59 324387 (6.74) -0.49 3.71 -1.17 0.51 
60-64 270434 (5.62) -5.48 -1.60 -1.44 0.54 
65-69 201639 (4.19) -10.47 -3.72 -1.74 1.01 
70-74 139244 (2.89) -3.69 2.01 -1.09 1.19 
75-79 101765 (2.12) 6.38 11.40 -1.17 1.27 
80-84 77964 (1.62) 7.14 11.12 -0.81 1.55 
85 or above 84545 (1.76) -11.33 -8.52 -1.21 0.26 
Total 4810040 4790075 4795380 4722872 4721624 

Groupquarter 
Type 

Institutional 43895 (42.00) 0.00 0.00 0.00 0.00 
Non-
Institutional 60627 (58.00) 0.00 0.00 0.00 0.00 

N 104522 104522 104522 104522 104522 
Scenario 1: Only TAZ level controls 
Scenario 2: TAZ level controls + 'Householder Age' control at the county level 
Scenario 3: TAZ level controls + 'Person Age' control at the county level  
Scenario 4: TAZ level controls + 'Householder Age' and 'Person Age' controls at the county level 
Numbers in parentheses are percentage values   
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Table 6 Comparison of Scenarios for County-level Control Variables 

Scenario County 
ID 

Householder Age Person Age 

Total 
Deviation 

% Total 
Deviation 

% Deviation 
Across 
Categories 

Total 
Deviation 

% Total 
Deviation 

% Deviation 
Across 
Categories 

Min Max Min Max 

1 

3 -4745 -2.29 -10.08 9.50 3889 0.71 -9.89 17.05 
5 -6878 -2.11 -10.03 9.11 1051 0.13 -32.11 13.10 
13 1517 2.46 -12.68 58.81 1562 0.93 -14.38 30.04 
21 -3379 -3.79 -9.72 6.82 -4316 -1.81 -18.20 12.05 
25 -1831 -1.96 -11.14 20.36 1428 0.58 -10.62 10.35 
27 -3725 -3.34 -8.47 7.48 2069 0.70 -10.78 17.45 
31 -10492 -2.79 -16.94 9.71 -23834 -2.39 -31.51 11.74 
33 -4644 -1.46 -11.83 7.56 -9574 -1.09 -18.39 21.97 
510 -2748 -1.08 -31.05 15.87 7760 1.25 -30.50 41.08 

2 

3 -4745 -2.29 -3.06 -2.01 4308 0.79 -4.94 24.21 
5 -6878 -2.11 -2.31 -1.14 1935 0.24 -28.18 12.31 
13 1517 2.46 0.13 4.32 2058 1.23 -8.09 19.75 
21 -3379 -3.79 -4.41 -2.65 -4248 -1.78 -16.45 15.50 
25 -1831 -1.96 -2.48 -1.20 1807 0.73 -5.77 14.59 
27 -3725 -3.34 -4.28 -2.10 2166 0.73 -11.67 25.51 
31 -10492 -2.79 -3.70 -2.45 -23130 -2.32 -25.95 9.62 
33 -4644 -1.46 -1.77 -0.71 -8623 -0.98 -17.25 28.31 
510 -2748 -1.08 -1.85 -0.67 9067 1.46 -13.22 25.56 

3 

3 -4745 -2.29 -14.56 68.53 -2211 -0.40 -1.77 1.66 
5 -6878 -2.11 -8.67 43.22 -6943 -0.85 -1.74 0.14 
13 1517 2.46 -9.19 161.83 -161 -0.10 -3.08 1.72 
21 -3379 -3.79 -11.37 49.43 -7232 -3.04 -6.42 -1.33 
25 -1831 -1.96 -9.71 81.13 -1511 -0.61 -1.82 1.97 
27 -3725 -3.34 -12.39 76.92 -1204 -0.41 -3.13 1.37 
31 -10492 -2.79 -6.18 30.49 -40536 -4.06 -6.47 -1.64 
33 -4644 -1.46 -9.36 41.42 -26250 -2.99 -5.14 -1.11 
510 -2748 -1.08 -8.87 17.17 -1120 -0.18 -2.00 0.74 

4 

3 -4745 -2.29 -3.52 -1.37 -2512 -0.46 -3.38 5.83 
5 -6878 -2.11 -3.37 -1.32 -6951 -0.85 -3.34 2.47 
13 1517 2.46 1.33 4.37 -201 -0.12 -5.25 6.97 
21 -3379 -3.79 -4.91 -3.07 -7308 -3.07 -5.77 3.50 
25 -1831 -1.96 -4.58 -1.55 -1696 -0.68 -3.54 5.94 
27 -3725 -3.34 -5.04 -2.58 -1353 -0.46 -3.56 5.06 
31 -10492 -2.79 -3.64 -1.58 -40663 -4.08 -7.16 -0.86 
33 -4644 -1.46 -2.49 -0.12 -26418 -3.01 -6.01 2.12 
510 -2748 -1.08 -1.61 -0.48 -1314 -0.21 -1.45 3.28 

Scenario 1: Only TAZ level controls 
Scenario 2: TAZ level controls + 'Householder Age' control at the county level 
Scenario 3: TAZ level controls + 'Person Age' control at the county level  
Scenario 4: TAZ level controls + 'Householder Age' and 'Person Age' controls at the county level 
 


